Geometric programming with signomials

نویسندگان

  • Richard James Duffin
  • Elmor L. Peterson
چکیده

The difference of two "posynomials" (namely, polynomials with arbitrary real exponents, but positive coefficients and positive independent variables) is termed a signomial. Each signomial program (in which a signomial is to be either minimized or maximized subject to signomial constraints) is transformed into an equivalent posynomial program in which a posynomial is to be minimized subject only to inequality posynomial constraints. The resulting class of posynomial programs is significantly larger than the class of (prototype) "geometric programs (namely, posynomial programs in which a posynomial is to be minimized subject only to upper-bound inequality posynomial constraints) However, much of the (prototype) geometric programming theory is generalized by studying the "equilibrium solutions to the "reversed geometric programs" in this larger class. Actually, some of this theory is new even when specialized to the class of prototype geometric programs. On the other hand, all of it can indirectly, but easily, be applied to the much larger class of well-posed "algebraic programs" (namely, programs involving real-valued functions that are generated solely by addition, subtraction, multiplication, division, and the extraction of roots).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Programming with Stochastic Parameter

Geometric programming is efficient tool for solving a variety of nonlinear optimizationproblems. Geometric programming is generalized for solving engineering design. However,Now Geometric programming is powerful tool for optimization problems where decisionvariables have exponential form.The geometric programming method has been applied with known parameters. However,the observed values of the ...

متن کامل

Geometric Programming Problem with Trapezoidal Fuzzy Variables

Nowadays Geometric Programming (GP) problem is a very popular problem in many fields. Each type of Fuzzy Geometric Programming (FGP) problem has its own solution. Sometimes we need to use the ranking function to change some part of GP to the linear one. In this paper, first, we propose a method to solve multi-objective geometric programming problem with trapezoidal fuzzy variables; then we use ...

متن کامل

A goal geometric programming problem (G2P2) with logarithmic deviational variables and its applications on two industrial problems

A very useful multi-objective technique is goal programming. There are many methodologies of goal programming such as weighted goal programming, min-max goal programming, and lexicographic goal programming. In this paper, weighted goal programming is reformulated as goal programming with logarithmic deviation variables. Here, a comparison of the proposed method and goal programming with weighte...

متن کامل

Extension of Pólya’s theorem to signomials with rational exponents

Pólya proved that if a real, homogeneous polynomial is positive on the nonnegative orthant (except at the origin), then it is the quotient of two homogeneous polynomials with no negative coefficients. We generalize this from polynomials to signomials with arbitrary rational exponents; we also show that Pólya’s theorem does not generalize to arbitrary signomials (i.e., with irrational (real) exp...

متن کامل

Estimation of Concentrations in Chemical Systems at Equilibrium Using Geometric Programming

Geometric programming is a mathematical technique, which has been developed for nonlinear optimization problems. This technique is based on the dual program with linear constraints. Determination of species concentrations in chemical equilibrium conditions is one of its applications in chemistry and chemical engineering fields. In this paper, the principles of geometric programming and its comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015